博客
关于我
POJ2226 Muddy Fields(建图+二分图匹配)
阅读量:750 次
发布时间:2019-03-21

本文共 2276 字,大约阅读时间需要 7 分钟。

这个问题可以通过将其转化为二分图匹配问题来解决。具体步骤如下:

  • 构建二分图

    • 行节点列节点分别代表矩阵中的行和列。
    • 每段连续的*标记为一条边,连接其所在的行节点和列节点。
  • 匈牙利算法

    • 使用匈牙利算法在构建的二分图中寻找最大匹配。
    • 最大匹配的大小即为所需的最小木板数量。
  • 以下是实现代码:

    #include 
    #include
    #include
    #include
    #include
    #include
    #include
    using namespace std;int main() { #include
    #include
    #include
    #include
    #include
    #include
    using namespace std; int n, m; char s[55][55]; int vis1[55][55]; int vis2[55][55]; // 读取输入 scanf("%d%d", &n, &m); for (int i = 1; i <= n; ++i) { scanf("%s", s + i); } // 初始化访问数组 memset(vis1, 0, sizeof(vis1)); memset(vis2, 0, sizeof(vis2)); // 统计每行和每列的连续块数量 int cnt_row = 0; for (int i = 1; i <= n; ++i) { int current_row_block = 0; for (int j = 1; j <= m; ++j) { if (s[i][j] == '*' && !vis1[i][j]) { vis1[i][j] = 1; current_row_block++; } else if (s[i][j] == '*' && !vis1[i][j]) { vis1[i][j] = 1; current_row_block++; } else { vis1[i][j] = 0; current_row_block = 0; } cnt_row++; } } int cnt_col = 0; for (int j = 1; j <= m; ++j) { int current_col_block = 0; for (int i = 1; i <= n; ++i) { if (s[i][j] == '*' && !vis2[i][j]) { vis2[i][j] = 1; current_col_block++; } else if (s[i][j] == '*' && !vis2[i][j]) { vis2[i][j] = 1; current_col_block++; } else { vis2[i][j] = 0; current_col_block = 0; } cnt_col++; } } // 组建边的表 int[block_size][block_size] v; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= m; ++j) { if (s[i][j] == '*') { v[vis1[i][j]][vis2[i][j]] = 1; } } } // 匈牙利算法 int tot = max(cnt_row, cnt_col); int match[tot + 1]; int vis[tot + 1]; auto finder = [&](int u, int tot) { for (int v = 1; v <= tot; ++v) { if (v == 0) continue; if (v == u) continue; if (v && match[v] == 0) { bool visited = 0; queue
    q; q.push(u); while (!q.empty()) { int current = q.front(); q.pop(); if (visited[current]) { continue; } visited[current] = 1; for (int i = 1; i <= tot; ++i) { if (match[i] != 0 && match[i] != u && v != 0 && match[i] != v) { if (v == 0) return 1; mark(i, tot, visited, q, u, v); } } } return -1; } } return 0; }; int result = 0; for (int i = 1; i <= tot; ++i) { memset(vis, 0, sizeof(vis)); int cnt = finder(i, tot); if (cnt > 0) { result += cnt; } } cout << result << endl; return 0;}

    这个代码首先读取输入,初始化访问数组,然后统计每行和每列的连续块数量。接着,遍历矩阵,将每个*对应到行和列的块中,并构建二分图的边。最后使用匈牙利算法找到最大匹配,从而确定最小木板数量。

    转载地址:http://ojxgz.baihongyu.com/

    你可能感兴趣的文章
    mysql中出现Unit mysql.service could not be found 的解决方法
    查看>>
    mysql中出现update-alternatives: 错误: 候选项路径 /etc/mysql/mysql.cnf 不存在 dpkg: 处理软件包 mysql-server-8.0的解决方法(全)
    查看>>
    Mysql中各类锁的机制图文详细解析(全)
    查看>>
    MySQL中地理位置数据扩展geometry的使用心得
    查看>>
    Mysql中存储引擎简介、修改、查询、选择
    查看>>
    Mysql中存储过程、存储函数、自定义函数、变量、流程控制语句、光标/游标、定义条件和处理程序的使用示例
    查看>>
    mysql中实现rownum,对结果进行排序
    查看>>
    mysql中对于数据库的基本操作
    查看>>
    Mysql中常用函数的使用示例
    查看>>
    MySql中怎样使用case-when实现判断查询结果返回
    查看>>
    Mysql中怎样使用update更新某列的数据减去指定值
    查看>>
    Mysql中怎样设置指定ip远程访问连接
    查看>>
    mysql中数据表的基本操作很难嘛,由这个实验来带你从头走一遍
    查看>>
    Mysql中文乱码问题完美解决方案
    查看>>
    mysql中的 +号 和 CONCAT(str1,str2,...)
    查看>>
    Mysql中的 IFNULL 函数的详解
    查看>>
    mysql中的collate关键字是什么意思?
    查看>>
    MySql中的concat()相关函数
    查看>>
    mysql中的concat函数,concat_ws函数,concat_group函数之间的区别
    查看>>
    MySQL中的count函数
    查看>>